Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients

Author:

Khan Taj Ali1ORCID,Mazhar Humaira1,Saleha Shamim2ORCID,Tipu Hamid Nawaz3ORCID,Muhammad Niaz1,Abbas Muhammad Nasser1

Affiliation:

1. Department of Microbiology, Kohat University of Science and Technology, KPK, Kohat 26000, Pakistan

2. Department of Biotechnology, Kohat University of Science and Technology, KPK, Kohat 26000, Pakistan

3. Department of Immunology, Armed Forces Institute of Pathology, Rawalpindi 46000, Pakistan

Abstract

Background. Mycobacterium tuberculosis (M. tuberculosis) that causes tuberculosis (TB) kills millions of infected people annually especially multidrug-resistant tuberculosis (MDR-TB). On infection, macrophages recognize the mycobacteria by toll-like receptor (TLR) followed by phagocytosis and control of mycobacteria. In addition, macrophages also secrete IL-12 to induce IFN-γ production by T, which, in turn, increases the phagocytosis and oxidative burst. Individuals with defects in innate or adaptive immunity exhibit increased susceptibility to M. tuberculosis. Understanding these immunologic mechanisms will help in TB control. We aimed to investigate the immunopathologic mechanisms in MDR-TB and role of recombinant human interferon-gamma (rhIFN-γ). Study Design and Methods. Monocyte-derived macrophages (MDMs) were generated from peripheral blood mononuclear cells of MDR-TB patients and healthy subjects and were investigated for immunologic response by ELISA and flow cytometry. Results. Different functional and molecular anomalies were observed in macrophages. In addition, a defective immune response to M. tuberculosis from the patient’s MDMs was characterized, which in turn improved by pretreatment with rhIFN-γ. Conclusion. This work highlights the fact that rhIFN-γ improves macrophages function against M. tuberculosis and treatment of patients with poor responsiveness to TB therapy may be needed in future to include IFN-γ as adjuvant therapy after the full characterization of pathological and molecular mechanisms in these and in other more multidrug-resistant TB patients.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3