DFT Study on the Carrier Concentration and Temperature-Dependent Thermoelectric Properties of Antimony Selenide

Author:

Jayaraman Aditya1,Bhat Kademane Abhijit1,Molli Muralikrishna1ORCID

Affiliation:

1. Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134, India

Abstract

We present the thermoelectric properties of Antimony Selenide (Sb2Se3) obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time (τ) approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient (S) was found to decrease with increasing temperature, electrical conductivity (σ/τ) was almost constant in the entire temperature range, and electronic thermal conductivity (κ/τ) increased with increasing temperature. With increase in temperature S decreased from 1870 μV/K (at 300 K) to 719 μV/K (at 800 K), electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K) to 3.92 × 1015 W/m K s (at 800 K), and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K) to 20 × 1019/Ω m s (at 800 K). The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K) was found for hole concentration around 1019 cm−3.

Funder

DST-FIST

Publisher

Hindawi Limited

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3