Rolling Bearing Fault Detection System and Experiment Based on Deep Learning

Author:

Zhang Bo1ORCID

Affiliation:

1. School of Network and Communication, Nanjing Vocational College of Information Technology, Nanjing 210023, China

Abstract

The current situation of frequent small-scale accidents shows that the existing methods have not completely solved the problem of bearing failures, and new research methods need to be used to complete the study of bearing failures. To prevent the failure of rolling bearings and meet the need for timely detection of faults, this research is based on deep learning. Using the combination of deep transfer learning and metric learning methods, the identification and analysis of bearing multi-state vibration signals under different working conditions are carried out. The combination of SSAE-based similarity measurement criteria and deep transfer learning can reduce the differences between different domains. It is difficult to distinguish the data samples at the boundary and diagnose the problems that the physical meaning is difficult to understand. Through the bearing fault diagnosis analysis, the validity of the deep learning diagnosis model proposed in this paper is verified. The results show that the detection accuracy of the rolling bearing fault detection method based on LCM-SSAE is 0.6 percentage points higher than that of the rolling bearing fault detection method based on SSAE, which proves that the method is suitable for the fault detection of rolling bearing, and it also shows the effectiveness and robustness of the fault detection system of rolling bearing.

Funder

Scientific Research Foundation for High-Level Talents in NJCIT

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3