Transformer-Based Data-Driven Video Coding Acceleration for Industrial Applications

Author:

Li Yixiao12,Li Lixiang12ORCID,Zhuang Zirui3,Fang Yuan12,Peng Haipeng12,Ling Nam4

Affiliation:

1. Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. Department of Computer Science and Engineering, Santa Clara University, 95053 Santa Clara, USA

Abstract

With the exploding development of edge intelligence and smart industry, deep learning-based intelligent industrial solutions are promptly applied in the manufacturing process. Many intelligent industrial solutions such as automatic manufacturing inspection are computer vision based and require fast and efficient video encoding techniques so that video streams can be processed as quickly as possible either at the edge cluster or over the cloud. As one of the most popular video coding standards, the high efficiency video coding (HEVC) standard has been applied to various industrial scenes. However, HEVC brings not only a higher compression rate but also a significant increase in encoding complexity, which hinders its practical application in industrial scenarios. Fortunately, a large amount of video coding data makes it possible to accelerate the encoding process in the industry. To speed up the video coding process in some industrial scenes, this paper proposes a data-driven fast approach for coding tree unit (CTU) partitioning in HEVC intracoding. First, we propose a method to represent the partition result of a CTU as a column vector of length 21. Then, we employ lots of encoding data produced in normal industry scenes to train transformer models used to predict the partitioning vector of the CTU. Finally, the final partitioning structure of the CTU is generated from the partitioning vector after a postprocessing operation and used by an industrial encoder. Compared with the original HEVC encoder used by some industrial applications, experiment results show that our approach achieves 58.77% encoding time reduction with 3.9% bit rate loss, which indicates that our data-driven approach for video coding has great capacity working in industrial applications.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3