Synchronization in Finite Time of Fuzzy Neural Networks with Hybrid Delays and Uncertain Nonlinear Perturbations

Author:

Zhao Shuyue1,Li Kelin1ORCID,Hu Weiyi1

Affiliation:

1. School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China

Abstract

This paper deals with the finite-time synchronization problem of a class of fuzzy neural networks with hybrid delays and uncertain nonlinear perturbations. By applying the famous finite-time stability theory, combining differential inequality techniques, and the analysis approach, several new algebraic sufficient criteria are obtained to realize finite-time synchronization between the drive system and the response system by designing a state feedback controller and an adaptive controller. Taking discrete delays, distributed delays, and uncertain nonlinear perturbations into account in fuzzy cellular neural networks makes the neural system more general than most existing cellular neural networks. Two different novel types of controllers designed to achieve finite-time synchronization can not only effectively overcome the influence of time delays and perturbations but also change their form according to the change of system state or perturbation to achieve a better control effect. Meanwhile, some algebraic sufficient criteria obtained in this paper can be proved by the parameters of the system itself, and the complex calculation of matrix inequality is avoided. Finally, the validity of our proposed results is confirmed by several examples and simulations. Furthermore, a secure communication problem is presented to further illustrate the fact of the obtained results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computational Mathematics,Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3