Synthesis, Antioxidant, and Antidiabetic Activities of Ketone Derivatives of Succinimide

Author:

Waheed Bushra1,Mukarram Shah Syed Muhammad1,Hussain Fida1,Khan Mohammad Ijaz1,Zeb Anwar1,Jan Muhammad Saeed1ORCID

Affiliation:

1. Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan

Abstract

The prevalence of diabetes mellitus is persistently increasing globally creating a serious public health affliction. Diabetes mellitus is categorized into two major types designated as type I and Type II. Type I diabetes mellitus is characterized by complete lack of secretion of insulin, while Type II diabetes mellitus is the resistance of peripheral tissues to the action of insulin and inadequate compensatory secretion of insulin. Chronic hyperglycemia associated with diabetes causes failure of cardiovascular system, nervous system, kidneys, and eyes. At present, different types of drugs are used for the management of diabetes, but each of them is associated with more or less serious side effects. Therefore, we need to develop new therapeutic agents that have better efficacy and safety profile. In this study, three ketone derivatives of succinimides were synthesized based on Michael addition and characterized using NMR. All the synthesized compounds were checked for their in vitro α-amylase and α-glucosidase inhibitory activities. Further the synthesized compounds were also explored for their antioxidant activities, i.e, DPPH and ABTS assays. Based on the in vitro results, the synthesized compounds were further evaluated for in vivo antidiabetic activity. The synthesized compounds were (2-oxocyclohexyl)-1-phenylpyrrolidine-2,5-dione (BW1), benzyl-3-(2-oxocyclohexyl) pyrrolidine-2,5-dione (BW2), and (4-bromophenyl)-3-(2-oxocyclohexyl) pyrrolidine-2,5-dione (BW3). BW1 showed the highest inhibitory activity for DPPH causing 83.03 ± 0.48 at 500 μg/ml with IC50 value of 10.84 μg/ml and highest inhibitory activity for ABTS causing 78.35 ± 0.23 at 500 μg/ml with IC50 value of 9.40 μg/ml against ascorbic acid used as standard. BW1 also exhibited the highest activity against α-amylase and α-glucosidase inhibition causing 81.60 ± 0.00 at concentrations of 500 μg/ml with IC50 value of 13.90 μg/ml and 89.08 ± 1.04 at concentrations of 500 μg/ml with IC50 value of 10.49 μg/ml, respectively, against the standard drug acarbose.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference43 articles.

1. Diabetes mellitus in developing countries and case series;O. Y. Buowari,2013

2. Global Prevalence of Diabetes

3. A review on role of vitamin E supplementation in type 2 diabetes mellitus;D. Pavithra;Drug Invention Today,2018

4. Diagnosis and classification of diabetes mellitus;American Diabetes Association;Diabetes Care,2014

5. Pathophysiology of Type 2 Diabetes Mellitus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3