Highly Accessible Computational Prediction and In Vivo/In Vitro Experimental Validation: Novel Synthetic Phenyl Ketone Derivatives as Promising Agents against NAFLD via Modulating Oxidoreductase Activity

Author:

Qiao Yanan12,Deng Huifang1,Liu Lihua1ORCID,Liu Shuran3,Ren Luyao1,Shi Chuandao4,Chen Xi1,Guan Lixia1,Liu Weiran1,Li Zehua1,Li Yunlan14ORCID

Affiliation:

1. School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China

2. Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, China

3. Department of Automation, Tsinghua University, Beijing 100080, China

4. School of Public Health, Shaanxi University of Chinese Medicine, Xi’an 712046, China

Abstract

Nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions with no pharmacological treatment approved. Several highly accessible computational tools were employed to predict the activities of twelve novel compounds prior to actual chemical synthesis. We began our work by designing two or three hydroxyl groups appended to the phenyl ketone core, followed by prediction of drug-likeness and targets. Most predicted targets for each compound overlapped with NAFLD targets (≥80%). Enrichment analysis showed that these compounds might regulate oxidoreductase activity. Then, these compounds were synthesized and confirmed by IR, MS, 1H, and 13C NMR. Their cell viability demonstrated that twelve compounds exhibited appreciable potencies against NAFLD ( E C 50 values 13.5 μ M ). Furthermore, the most potent compound 5f effectively prevented NAFLD progression as evidenced by the change in histological features. 5f significantly reduced total cholesterol and triglyceride levels in vitro/in vivo, and the effects of 5f were significantly stronger than those of the control drug. The proteomic data showed that oxidoreductase activity was the most significantly enriched, and this finding was consistent with docking results. In summary, this validated presynthesis prediction approach was cost-saving and worthy of popularization. The novel synthetic phenyl ketone derivative 5f holds great therapeutic potential by modulating oxidoreductase activity to counter NAFLD.

Funder

College Students’ Innovation and Entrepreneurship Training Projects

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3