Performance Analysis of a Reconfigurable Mixer Using Particle Swarm Optimization

Author:

Mehta Shilpa1ORCID,Li Xue Jun1ORCID,Donelli Massimo2ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, New Zealand

2. Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy

Abstract

In this article, a novel 1.8-5 GHz downconversion mixer is presented. The mixer is designed and simulated using SiGe 8HP 130 nm CMOS process technology. The proposed mixer is implemented by incorporating a double-balanced configuration, active inductor, and current mirror techniques. For performance optimization of the proposed mixer, different algorithms such as the genetic algorithm (GA), inclined plane system optimization (IPO) algorithm, and particle swarm optimization (PSO) algorithm have been used. Compared to existing works, this design shows an enhanced conversion gain (CG), a third-order input intercept point (IIP3), and return loss ( S 11 ) at the expense of the noise figure (NF). Additionally, the design consumes low power and covers a small chip area compared to other state-of-the-art devices. PSO shows the most promising results when compared to other optimization algorithms’ results. According to the measurement results after PSO optimization, the mixer attains a maximum CG of 25 dB, an IIP3 of 4 dBm, and a NF of 5.2 dB at 5 GHz, while consuming only 15 mW of DC power. The mixer operates at 1.2 V and covers 0.8 mm2 die area.

Funder

Auckland University of Technology, New Zealand

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference44 articles.

1. Designing and Testing Software-Defined Radios

2. Optimal design of CMOS mixer: A research review

3. AsadB.Low-Noise 24 GHz 0.15μm GaAs pHEMT Gilbert Cell Mixer for Intelligent Transportation System Radar Receiver, [M.S. Thesis]2014Ottawa, ON, CanadaOttawa-Carleton Institute for Electrical and Computer Engineering, Electrical and Computer Engineering

4. High-linearity Gilbert-cell mixer design for cryogenic applications

5. A high linearity reconfigurable down-conversion mixer for dual-band applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3