Affiliation:
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing 100084, China
3. The Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084, China
Abstract
Source term analysis is important in the design and safety analysis of advanced nuclear reactor and also provides a radiation safety analysis basis for Modular High-Temperature Gas-Cooled Reactor (HTR). High-Temperature Gas-Cooled Reactor-Pebble-bed Modules (HTR-PM) design by China is a typical Gen-IV and due to different safety concepts and systems, the implements of source term analysis in light water reactors are not entirely applicable to HTR-PM. To solve this problem, HTR-PM Source Term Analysis Code (HTR-STAC) has been developed and related V&V has been finished. HTR-STAC consists of five units, including LOOP (Primary Circuit Source Term Analysis Code), NORMAL (Normal Condition Airborne Source Term Analysis Code), ARCC (Accident Release Category Calculation code), CARBON (C-14 Source Term Analysis Code), and TRUM (Tritium Source Term Analysis Code). LOOP and NORMAL may be used as calculating primary circuit coolant radioactivity and the release of airborne radioactivity to the environment under normal operating conditions of HTR-PM, respectively. The code ARCC composed of several source term analysis programs in the different typical accidents scenario, including SGTR (Steam Generator Tube Rupture), LOCA (Loss of Coolant Accident), and the Transient Process, is compiled based on the results given by LOOP and NORMAL. CARBON and TRUM are developed to calculate the productions of C-14 and H-3 through a different mechanism. Furthermore, the V&V has been performed and show some positive results.
Funder
National S&T Major Projec
Subject
Nuclear Energy and Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献