Discoloration and Degradation of Bamboo under Ultraviolet Radiation

Author:

Yu Haixia1ORCID,He Shengliang2,Zhang Wenfu1,Zhan Mengyao1,Zhuang Xiaowei1,Wang Jin1ORCID,Yu Wenji3ORCID

Affiliation:

1. Zhejiang Academy of Forestry (Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources), 399# Liuhe Road, Xihu District, Hangzhou, Zhejiang 310023, China

2. Zhejiang Jiahe Bamboo Technology Co., Ltd, Longbanshan, Industrial Area, Suichang, Zhejiang 323300, China

3. Chinese Academy of Forestry, 1# Dongxiaofu, Xiangshan Road, Haidian Area, Beijing, China

Abstract

Light is one of the most adverse factors for bamboo deterioration and causes surface degradation and discoloration. The study was carried out to initiate efficient and effective photodiscoloration to modify and enrich bamboo colors that may be applied to bamboo dyeing. Different types of bamboo samples commonly used in the industry were studied experimentally under two types of ultraviolet (UV) light. Effects of light sources, radiation time, and distances on discoloration and discoloration mechanism were systematically studied. For both UV 313 and high-pressure mercury light, the bamboo surface turned red-yellow, and color parameters including Δ E , Δ a , Δ b , and C rapidly increased first and then stabilized for long time, while Δ L showed a similar trend, except for the final decrease. Compared with UV 313, high-pressure mercury lamp light was highly efficient and took less time to induce discoloration. Heat treatments darkened the bamboo color and slowed down photodiscoloration, and the higher temperature led to more photostability. The color change of bamboo scrimber under UV radiation was less and slower than that of untreated bamboo due to high density and heat treatment, and the dark carbonized scrimber changed less than that of the light carbonized scrimber. Relatively high contents of isovanillin, syringaldehyde, β-hydroxypropiovanillone, p-hydroxybenzaldehyde, and syringic acid were identified by GC-MS, and syringaldehyde, 2,6-dimethylbenzoquinone, and 3-hydroxy-4-methoxybenzoic acid were identified by HPLC-MS from a bamboo discoloration layer after high-pressure mercury lamp radiation. These products all contained a conjugated double bond and were conjectured to be degraded from lignin or aromatic extracts. Particularly, 2,6-dimethylbenzoquinone which contained a cyclohexenedione structure without benzene rings, was more chemically stable than other conjugated double bonds with benzene rings, and was supposed to be the final product (chromogenic group) during bamboo photodegradation. Untreated or light-colored bamboo under high-energy UV light initiated highly efficient and effective photodiscoloration, and UV light is recommended for being applied to industrial bamboo dyeing. Compared with traditional chemical dyeing, the photoinduced dyeing method has no chemical addition and is easy to operate and environmental-friendly.

Funder

Science and Technology Department of Zhejiang Province

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Reference19 articles.

1. Light source dependence of the photodegradation of wood

2. XuY. J.Wood color and wood color treatment19961ChinaForestry science and technology development

3. A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods

4. Measuring penetration of light into wood by detection of photo-induced free radicals;D. N. S. Hon;Wood Science,1978

5. A spectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3