Head and Neck Cancer Tumor Segmentation Using Support Vector Machine in Dynamic Contrast-Enhanced MRI

Author:

Deng Wei12,Luo Liangping3ORCID,Lin Xiaoyi4ORCID,Fang Tianqi4,Liu Dexiang12,Dan Guo45ORCID,Chen Hanwei12ORCID

Affiliation:

1. Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China

2. Medical Imaging Institute of Panyu, Guangzhou, China

3. Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China

4. National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China

5. Center for Neurorehabilitation, Shenzhen Institute of Neuroscience, Shenzhen 518057, China

Abstract

Objective. We aimed to propose an automatic method based on Support Vector Machine (SVM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to segment the tumor lesions of head and neck cancer (HNC). Materials and Methods. 120 DCE-MRI samples were collected. Five curve features and two principal components of the normalized time-intensity curve (TIC) in 80 samples were calculated as the dataset in training three SVM classifiers. The other 40 samples were used as the testing dataset. The area overlap measure (AOM) and the corresponding ratio (CR) and percent match (PM) were calculated to evaluate the segmentation performance. The training and testing procedure was repeated for 10 times, and the average performance was calculated and compared with similar studies. Results. Our method has achieved higher accuracy compared to the previous results in literature in HNC segmentation. The average AOM with the testing dataset was 0.76 ± 0.08, and the mean CR and PM were 79 ± 9% and 86 ± 8%, respectively. Conclusion. With improved segmentation performance, our proposed method is of potential in clinical practice for HNC.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3