Genome-Wide DNA Methylation Analysis during Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells

Author:

Cao Yangyang1ORCID,Yang Haoqing1,Jin Luyuan23,Du Juan13,Fan Zhipeng1ORCID

Affiliation:

1. Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China

2. Department of General Dentistry, Capital Medical University School of Stomatology, Beijing 100050, China

3. Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China

Abstract

Bone marrow mesenchymal stem cells (BMSCs) nowadays are regarded as promising candidates in cell-based therapy for the regeneration of damaged bone tissues that are either incurable or intractable due to the insufficiency of current therapies. Recent studies suggest that BMSCs differentiate into osteoblasts, and that this differentiation is regulated by some specific patterns of epigenetic modifications, such as DNA methylation. However, the potential role of DNA methylation modification in BMSC osteogenic differentiation is unclear. In this study, we performed a genome-wide study of DNA methylation between the noninduced and induced osteogenic differentiation of BMSCs at day 7. We found that the majority of cytosines in a CpG context were methylated in induced BMSCs. Our results also revealed that, along with the induced osteogenic differentiation in BMSCs, the average genomic methylation levels and CpG methylation in transcriptional factor regions (TFs) were increased, the CpG methylation level of various genomic elements was mainly in the medium-high methylation section, and CpG methylation levels in the repeat element had highly methylated levels. The GO analysis of differentially methylated region- (DMR-) associated genes (DMGs) showed that GO terms, including cytoskeletal protein binding (included in Molecular Function GO terms), skeletal development (included in Biological Process GO terms), mesenchymal cell differentiation (included in Biological Process GO terms), and stem cell differentiation (included in Biological Process), were enriched in the hypermethylated DMGs. Then, the KEGG analysis results showed that the WNT pathway, inositol phosphate metabolism pathway, and cocaine addiction pathway were more correlative with the DMRs during the induced osteogenic differentiation in BMSCs. In conclusion, this study revealed the difference of methylated levels during the noninduced and induced osteogenic differentiation of BMSCs and provided useful information for future works to characterize the important function of epigenetic mechanisms on BMSCs’ differentiation.

Funder

Capital Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3