How Supraphysiological Oxygen Levels in Standard Cell Culture Affect Oxygen-Consuming Reactions

Author:

Stuart Jeffrey A.1ORCID,Fonseca Joao1,Moradi Fereshteh1,Cunningham Cassandra1,Seliman Bishoy1,Worsfold Cydney R.1,Dolan Sarah1,Abando John1,Maddalena Lucas A.2

Affiliation:

1. Department of Biological Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1

2. MRC Cancer Research Centre, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK

Abstract

Most mammalian tissue cells experience oxygen partial pressuresin vivoequivalent to 1–6% O2(i.e., physioxia). In standard cell culture, however, headspace O2levels are usually not actively regulated and under these conditions are ~18%. This drives hyperoxia in cell culture media that can affect a wide variety of cellular activities and may compromise the ability ofin vitromodels to reproducein vivobiology. Here, we review and discuss some specific O2-consuming organelles and enzymes, including mitochondria, NADPH oxidases, the transplasma membrane redox system, nitric oxide synthases, xanthine oxidase, and monoamine oxidase with respect to their sensitivities to O2levels. Many of these produce reactive oxygen and/or nitrogen species (ROS/RNS) as either primary end products or byproducts and are acutely sensitive to O2levels in the range from 1% to 18%. Interestingly, many of them are also transcriptional targets of hypoxia-inducible factors (HIFs) and chronic cell growth at physioxia versus 18% O2may alter their expression. Aquaporins, which facilitate hydrogen peroxide diffusion into and out of cells, are also regulated by HIFs, indicating that O2levels may affect intercellular communication via hydrogen peroxide. The O2sensitivities of these important activities emphasize the importance of maintaining physioxia in culture.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3