Artificial Neural Networks to Predict the Power Output of a PV Panel

Author:

Lo Brano Valerio1ORCID,Ciulla Giuseppina1ORCID,Di Falco Mariavittoria1

Affiliation:

1. DEIM Università degli studi di Palermo, Viale Delle Scienze, Edificio 9, 90128 Palermo, Italy

Abstract

The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3