Smart Switching Bilateral Filter with Estimated Noise Characterization for Mixed Noise Removal

Author:

Langampol Kriengkri1,Srisomboon Kanabadee1,Patanavijit Vorapoj2,Lee Wilaiporn1ORCID

Affiliation:

1. Communication and Computer Network Research Group (C2NRG), Electrical Engineering, Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Thailand

2. Department of Electrical and Electronic Engineering, Faculty of Engineering, Assumption University, Bangkok, Thailand

Abstract

Traditionally, several existing filters are proposed for removing a specific type of noise. However, in practice, the image communicated through the communication channel may be contaminated with more than one type of noise. Switching bilateral filter (SBF) is proposed for removing mixed noise by detecting a contaminated noise at the concerned pixel and recalculates the filter parameters. Although the filter parameters of SBF are sensitive to type and strength of noise, the traditional SBF filter has not taken the strength into account. Therefore, the traditional SBF filter cannot remove the mixed noise efficiently. In this paper, we propose a smart switching bilateral filter (SSBF) to outperform a demerit of traditional SBF filter. In the first stage of SSBF, we propose a new scheme of noise estimation using domain weight (DW) pattern which characterizes the distribution of the different intensity between a considered pixel and its neighbors. By using this estimation, the types of mixed noises and their strength are estimated accurately. The filter parameters of SBF are selected from the table where the spatial weight and radiometric weight are already learned. As a result, SSBF can improve the performance of traditional SBF and can remove mixed noises efficiently without knowing the exact type of contaminated mixed noise. Moreover, the performance of SSBF is compared to the optimal SBF filter (OSBF) where OSBF sets the optimal value of filter parameters on the contaminated mixed noise and three new filters — block-matching and 3D filtering (BM3D), nonlocal sparse representation (NCSR), and trilateral filter (TF). The simulation results showed that the performance of SSBF outperforms BM3D, NCSR, TF, and SBF and is near to optimal SBF filter, even if the SSBF does not know the type of mixed noise.

Funder

Ministry of Science and Technology of Thailand

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference21 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3