Mechanical Performance and Numerical Simulation of Basalt Fiber Reinforced Concrete (BFRC) Using Double-K Fracture Model and Virtual Crack Closure Technique (VCCT)

Author:

Zhao Yawei1ORCID,Sun Xinjian1ORCID,Cao Peng12,Ling Yifeng3ORCID,Gao Zhen1,Zhan Qibing1ORCID,Zhou Xinjie1ORCID,Diao Mushuang1ORCID

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, School of Water Resources and Electric Power, Qinghai University, Xining, Qinghai Province 810016, China

2. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China

3. National Concrete Pavement Technology Center, Institute for Transportation, Ames, IA 50014, USA

Abstract

This paper mainly investigates the fracture parameters of Basalt Fiber Reinforced Concrete (BFRC) with various fiber lengths and dosages using Double-K fracture model. The model was developed by fracture criterion using ABAQUS Virtual Crack Closure Technique (VCCT), and the results of the model and experiments were compared. The basalt fiber with length of 6 mm and 12 mm was added into concrete in the dosage of 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% by volume of concrete, respectively. Concrete specimens were cast into three dimensions, i.e., 60 mm × 180 mm × 480 mm, 80 mm × 240 mm × 640 mm, and 100 mm × 300 mm × 800 mm. Then, three-point bending test was conducted on precast-notched beams. The load versus cracking mouth opening displacement (P-CMOD curve) was developed in order to evaluate cracking and breaking load. The initial fracture toughness and unstable fracture toughness were derived from the Double-K fracture model aimed to optimize the fiber length and dosage. The results showed that the initial fracture toughness and unstable fracture toughness increased first and then decreased with the increase in fiber dosage, and basalt fiber with length of 6 mm and dosage of 0.2% performed the best toughening effect on concrete. The comparison results showed that numerical simulation can better simulate the initiation and propagation of BFRC fractures and achieve the dynamic propagation process of fractures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3