Schiff Base Ligand 3-(-(2-Hydroxyphenylimino) Methyl)-4H-Chromen-4-One as Colorimetric Sensor for Detection of Cu2+, Fe3+, and V5+ in Aqueous Solutions

Author:

Alorabi Ali Q.1ORCID,Zabin Sami A.1ORCID,Alam Mohammad Mahboob1ORCID,Abdelbaset Mohamed12ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia

2. Chemistry Department, Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt

Abstract

The ligand 3-(-(2-hydroxyphenylimino) methyl)-4H-chromen-4-one (SL) has been synthesized and examined as a chemosensor for some metal ions in aqueous solutions based on colorimetric analysis. Color changes were monitored using UV–visible spectroscopy. Binding stoichiometry and limit of detection (LOD) were estimated using titration experimentation based on UV–visible absorbance and Job’s plot. The synthesized ligand was tested for selectivity in the presence of several cations and was examined for possible utility as a chemosensor in real water samples. The results indicated sensing ability and selectivity for Cu2+, Fe3+, and V5+. Stable complexes were formed between SL and Cu2+, Fe3+, and V5+, and the ligand-to-metal binding stoichiometry was found 2 : 1 in the SL-Cu2+ and SL-Fe3+ complexes, and 1 : 1 in the SL-V5+ complex. The results of LOD and bending constant were (7.03 μM, 1.37 × 104 M−1), (5.16 μM, 2.01 × 104 M−1), and (5.94 μM, 1.82 × 104 M−1) for Cu2+, Fe3+, and V5+, respectively.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

Reference35 articles.

1. Colorimetric Detection of Multiple Metal Ions Using Schiff Base 1-(2-Thiophenylimino)-4-(N-dimethyl)benzene

2. Heavy metals' contamination in sediments of Wadi Al-Aqiq water reservoir dam at Al-Baha region, KSA: Their identification and assessment

3. Toxicological profile for copper;ATSDR (Agency for Toxic Substances and Disease Registry),2022

4. Provisional peer reviewed toxicity values for iron and compounds;U.S.EPA (United States Environmental protection Agency),2006

5. Toxicological profile for vanadium;ATSDR,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3