Thermal Wavelength Measurement of Nanofluid in an Optical-Fiber Thermal Wave Cavity Technique to Determine the Thermal Diffusivity

Author:

Noroozi Monir1ORCID,Mohammadi Bijan1,Radiman Shahidan2ORCID,Zakaria Azmi3ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

2. School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

3. Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Abstract

The application of optical-fiber thermal wave cavity (OF-TWC) technique was investigated to measure the thermal diffusivity of Ag nanofluids. The thermal diffusivity was obtained by measuring the thermal wavelength of sample in a cavity scan mode. The spherical Ag nanoparticles samples were prepared at various sizes using the microwave method. Applying the thermal wavelength measurement in a flexible OF-TWC technique requires only two experimental data sets. It can be used to estimate thermal diffusivity of a small amount of liquid samples (0.3 ml) in a brief period. UV-Vis spectroscopy and transmission electron microscopy were used to measure the characterization of the Ag nanoparticles. The thermal diffusivity of distilled water, glycerol, and two different types of cooking oil was measured and has an excellent agreement with the reported results in the literature (difference of only 0.3%–2.4%). The nanofluids showed that the highest value of thermal diffusivity was achieved for smaller sized nanoparticles. The results of this method confirmed that the thermal wavelength measurement method using the OF-TWC technique had potential as a tool to measure the thermal diffusivity of nanofluids with different variables such as the size, shape, and concentration of the nanoparticles.

Funder

Universiti Kebangsaan Malaysia

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3