Optimal Nozzle Structure for an Abrasive Gas Jet for Rock Breakage

Author:

Liu Yong123ORCID,Zhang Juan12ORCID,Zhang Tao12,Zhang Huidong12

Affiliation:

1. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, 454000 Henan, China

2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000 Henan, China

3. Coal Production Safety Collaborative Innovation Center in Henan Province, Jiaozuo, 454000 Henan, China

Abstract

Abrasive gas jet technologies are efficient and beneficial and are widely used to drill metal and glass substrates. When the inlet pressure is increased, gas jets could be powerful enough to break rock. They have potential uses in coal-bed methane exploration and drilling because of their one-of-a-kind nonliquid jet drilling, which avoids water invasion and borehole collapse. Improving the efficiency of rock breakage using abrasive gas jets is an essential precondition for future coal-bed methane exploration. The nozzle structure is vital to the flow field and erosion rate. Furthermore, optimizing the nozzle structure for improving the efficiency of rock breakage is essential. By combining aerodynamics and by fixing the condition of the nozzle in the drill bit, we design four types of preliminary nozzles. The erosion rates of the four nozzles are calculated by numerical simulation, enabling us to conclude that a nozzle at Mach 3 can induce maximum erosion when the pressure is 25 MPa. Higher pressures cannot improve erosion rates because the shield effect decreases the impact energy. Smaller pressures cannot accelerate erosion rates because of short expansion waves and low velocities of the gas jets. An optimal nozzle structure is promoted with extended expansion waves and less obvious shield effects. To further optimize the nozzle structure, erosion rates at various conditions are calculated using the single-variable method. The optimal nozzle structure is achieved by comparing the erosion rates of different nozzle structures. The experimental results on rock erosion are in good agreement with the numerical simulations. The optimal nozzle thus creates maximum erosion volume and depth.

Funder

Scientific Research Foundation of State Key Laboratory Cultivation Base for Gas Geology and Gas Control

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3