Affiliation:
1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract
Analysis of passenger travel habits is always an important item in traffic field. However, passenger travel patterns can only be watched through a period time, and a lot of people travel by public transportation in big cities like Beijing daily, which leads to large-scale data and difficult operation. Using SPARK platform, this paper proposes a trip reconstruction algorithm and adopts the density-based spatial clustering of application with noise (DBSCAN) algorithm to mine the travel patterns of each Smart Card (SC) user in Beijing. For the phenomenon that passengers swipe cards before arriving to avoid the crowd caused by the people of the same destination, the algorithm based on passenger travel frequent items is adopted to guarantee the accuracy of spatial regular patterns. At last, this paper puts forward a model based on density and node importance to gather bus stations. The transportation connection between areas formed by these bus stations can be seen with the help of SC data. We hope that this research will contribute to further studies.
Funder
National Key Technologies Research & Development program
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献