Model Uncertainty in Predicting Facing Tensile Forces of Soil Nail Walls Using Bayesian Approach

Author:

Hu Hui1,Lin Peiyuan2ORCID

Affiliation:

1. School of Mechanics and Construction Engineering, Jinan University, Guangzhou, Guangdong, 510 632, China

2. Department of Civil Engineering & Ryerson Institute of Infrastructure Innovation, Ryerson University, Toronto, ON, Canada M5B 2K3

Abstract

The model uncertainty in prediction of facing tensile forces using the default Federal Highway Administration (FHWA) simplified equation is assessed in this study based on the Bayesian inference method and a large number of measured lower and upper bound facing tensile force data collected from the literature. Model uncertainty was quantified by model bias which is the ratio of measured to nominal facing tensile force. The Bayesian assessment was carried out assuming normal and lognormal distributions of model bias. Based on the collected facing tensile force data, it is shown that both the on-average accuracy and the spread in prediction accuracy of the default FHWA simplified facing tensile force equation depend largely upon the distribution assumptions. Two regression approaches were used to calibrate the default FHWA simplified facing tensile force equation for accuracy improvement. The Bayesian Information Criterion was adopted to quantitatively compare the rationality between the competing normal and lognormal statistical models that were intended for description of model bias. A case study is provided in the end to demonstrate both the importance of model uncertainty and the influence of distribution assumptions on model bias in reliability-based design of soil nail walls against facing flexural limit state.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3