Affiliation:
1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
Abstract
The relationships between geological features and rockmass behaviors under complex geological environments were investigated based on multiple intelligence classifiers. Random forest, support vector machine, bayes' classifier, fisher's classifier, logistic regression, and neural networks were used to establish models for evaluating the rockmass stability of slope. Samples of both circular failure mechanism and wedge failure mechanism were considered to establish and calibrate the comprehensive models. The classification performances of different modeling approaches were analyzed and compared by receiver operating characteristic (ROC) curves systematically. Results show that the proposed random forest model has the highest accuracy for evaluating slope stability of circular failure mechanism, while the support vector Machine model has the highest accuracy for evaluating slope stability of wedge failure mechanism. It is demonstrated that the established random forest and the support vector machine models are effective and efficient approaches to evaluate the rockmass stability of slope.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献