Optimization of Land Use Regression Modelling of PM2.5 Spatial Variations in Different Seasons across China

Author:

Chai Jun12,Song Jun3ORCID,Zhang Le1ORCID,Guo Bing1ORCID,Xu Yawen2

Affiliation:

1. College of Computer Science, Sichuan University, China

2. Chengdu Hankang Information Industry co., LTD, China

3. Department of Geography, Faculty of Social Science, Hong Kong Baptist University, China

Abstract

Fine particulate matter (PM2.5), one of the main components of haze, is of wide concern for its potential negative health effects. In order to further improve ambient air quality, it is essential to conclude the spatial variability of pollutants by investigating air pollution exposure. We divide China into two parts, north and south, and use a Land Use Regression (LUR) model to extract data including meteorological data, land use factors, and AOD retrievals, and use the machine learning algorithm to optimize the model to achieve predictions of the spatial distribution of near-surface PM2.5 mass concentrations in southern and northern China. We evaluated the seasonal consistency of the models in southern and northern China, and in northern China, we found a better fit with better seasonal consistency for the heating season and annual average model, while in southern China, we did not find a more fitted seasonal phase. The study illustrates that it is feasible to simulate the spatial distribution of PM2.5 mass concentration in large-scale areas based on the LUR model, and the seasonal consistency of the LUR model has been done to some extent.

Funder

Research and Development Project of Chengdu City

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3