Affiliation:
1. School of Sports, Central South University of Forestry and Technology, Changsha 410000, Hunan, China
2. School of Sports, Hunan University of Finance and Economics, Changsha 410000, Hunan, China
3. Translator, Hunan Deutz Power Ltd, Co., Changsha 410000, Hunan, China
Abstract
With the rapid development of the Internet of Things and artificial intelligence, the society gradually moves into the era of intelligence, and the research results and intelligent products based on wireless networks come into being. Machine learning algorithms are used to classify and recognize badminton strokes in this research, and a badminton technical feature statistics and pace training system are built on this foundation. By exploring the model characteristics and algorithm training method of the Hidden Markov Model (HMM), this paper proposes a model algorithm with an improved HMM training method for recognizing ten common badminton strokes, including serve, forehand rub, backhand rub, and forehand lunge. Serve, forehand rub, backhand rub, forehand flutter, forehand push, backhand push, forehand pick, backhand pick, and forehand loft are among the 10 typical badminton strokes identified by the algorithm. Our technique can distinguish ten common ball-striking movements in real-time, according to the testing.
Subject
Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献