Application of Nanocellulose Biofilter from Pineapple Peel Waste for Water Microbes Removal

Author:

Rini 1ORCID,Suryanto Heru2,Hari Purnama Dini1,Syukri Daimon1ORCID,Jaswandi 3,Kurniawan Fredy4,Makky Muhammad5

Affiliation:

1. Department of Food and Agricultural Product Technology, Andalas University, Padang, Indonesia

2. Department of Mechanical Engineering, Malang State University, Malang, Indonesia

3. Department of Animal Production, Andalas University, Padang, Indonesia

4. Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

5. Department Agricultural Engineering and Biosystem, Andalas University, Padang, Indonesia

Abstract

This research aimed to assess the effectiveness of nanocellulose biofilter (NCB) made from pineapple peel waste to reduce the number of microbes in water. Further processing of cellulose from nata de pina into nano size was proposed, then transformed into a filter membrane. Three types of NCB were developed: bacterial cellulose acetate membrane, bacterial cellulose acetate membrane with TiO2 treatment, and bacterial cellulose acetate membrane with TiO2 and graphite nanoplatelet treatment. These NCBs were used to filter microbes in several water sources in Padang City, West Sumatra Province. The filtering process was carried out using a filter holder where the NCB had been installed. The number of microbes contained in the water, including E. Coli, was determined before and after filtering. As a result, all NCBs reduced the total microbes in water by about 50%. Furthermore, when applied to water pollutant bacteria, E. Coli, all prepared NCBs reduced them by more than 90%. The effectiveness of all NCBs to remove microbes’ contamination, especially bacteria, looks very promising with or without TiO2 and graphene reinforcement. Although the efficacy of all NBC for microbial water purification was relatively similar, further experiments to clarify the superior of TiO2 and graphite nanoplatelet on NCB need to be carried out, especially in reducing chemical contamination.

Funder

Direktorat Jenderal Pendidikan Tinggi

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Changes of metabolites in Ground Chili Stored at a Fishpond and a Refrigerator;Current Research in Nutrition and Food Science Journal;2023-08-31

2. Nanotechnology Applied to Cellulosic Materials;Materials;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3