Development and Application of Visualization System of Gas Geological Dynamic Characteristics under Big Data Framework

Author:

Liu Xiao12ORCID,Xu Sen1,Lin Haixiao1ORCID,Ni Xiaoming1,Xuan Dequan3

Affiliation:

1. Henan Polytechnic University, Jiaozuo 454003, China

2. Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, China

3. School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China

Abstract

In this study, coal and gas outbursts are the “biggest killer” of mine safety production. With the deepening of mining, the mine gas disaster is becoming more and more serious. From the perspective of big data, the establishment of a dynamic visualization system of gas geology integrating gas geology, gas drainage, dynamic outburst prevention, and other information can effectively improving the defects of gas disaster prevention and control in the coal industry, such as insufficient advance, lack of systematic identification methods and backward information collection methods, which is of great significance to improve the ability of gas hazard identification. Based on the precise detection of geology, structure, and gas, this paper proposes to use information technology, the Internet of things, big data analysis, and other technologies to comprehensively analyze the changes in gas occurrence and coal seam occurrence on the basis of the causes of mine gas geological outburst, fully consider the logical relationship between different factors and outburst and adopt the disciplinary advantages of grey theory, fault tree theory, BP neural network, and so on. The tree of coal and gas outburst accidents with general significance is constructed by 24 relatively independent factors. The input vector is determined as the matrix composed of eight main factors affecting and controlling outburst, including gas pressure, coal mechanical strength, comprehensive characteristic coefficient of coal fragmentation, the permeability coefficient of coal, comprehensive characteristic coefficient of coal seam bifurcation and combination, comprehensive characteristic coefficient of coal thickness and coal thickness change, fault complexity coefficients and interlayer sliding comprehensive characteristic coefficient. The geological data affecting coal and gas outbursts are analyzed and calculated scientifically so that the gas geological data can be updated in time, and the change of gas geological laws is presented dynamically, so as to guide the mine to predict the gas disaster more scientifically and reliably.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3