Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L2-Regularization

Author:

Zhai Yikui1ORCID,Deng Wenbo1ORCID,Xu Ying1ORCID,Ke Qirui1,Gan Junying1ORCID,Sun Bing2,Zeng Junying1ORCID,Piuri Vincenzo3

Affiliation:

1. Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China

2. School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

3. Dipartimento di Informatica, Universita’ Degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy

Abstract

Though Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) via Convolutional Neural Networks (CNNs) has made huge progress toward deep learning, some key issues still remain unsolved due to the lack of sufficient samples and robust model. In this paper, we proposed an efficient transferred Max-Slice CNN (MS-CNN) with L2-Regularization for SAR ATR, which could enrich the features and recognize the targets with superior performance. Firstly, the data amplification method is presented to reduce the computational time and enrich the raw features of SAR targets. Secondly, the proposed MS-CNN framework with L2-Regularization is trained to extract robust features, in which the L2-Regularization is incorporated to avoid the overfitting phenomenon and further optimizing our proposed model. Thirdly, transfer learning is introduced to enhance the feature representation and discrimination, which could boost the performance and robustness of the proposed model on small samples. Finally, various activation functions and dropout strategies are evaluated for further improving recognition performance. Extensive experiments demonstrated that our proposed method could not only outperform other state-of-the-art methods on the public and extended MSTAR dataset but also obtain good performance on the random small datasets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3