Neurophysiological Correlates of Central Fatigue in Healthy Subjects and Multiple Sclerosis Patients before and after Treatment with Amantadine

Author:

Santarnecchi Emiliano12,Rossi Simone1,Bartalini Sabina1,Cincotta Massimo3,Giovannelli Fabio3,Tatti Elisa1,Ulivelli Monica1

Affiliation:

1. Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab), University of Siena, 53100 Siena, Italy

2. Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA 02215, USA

3. Unit of Neurology, Azienda Sanitaria di Firenze, 50121 Florence, Italy

Abstract

In ten healthy subjects and in ten patients suffering from Multiple Sclerosis (MS), we investigated the cortical functional changes induced by a standard fatiguing repetitive tapping task. The Cortical Silent Period (CSP), an intracortical, mainlyGABAB-mediated inhibitory phenomenon, was recorded by two different hand muscles, one acting as prime mover of the fatiguing index-thumb tapping task (First Dorsal Interosseous, FDI) and the other one not involved in the task but sharing largely overlapping central, spinal, and peripheral innervation (Abductor Digiti Minimi, ADM). At baseline, the CSP was shorter in patients than in controls. As fatigue developed, CSP changes involved both the “fatigued” FDI and the “unfatigued” ADM muscles, suggesting a cortical spread of central fatigue mechanisms. Chronic therapy with amantadine annulled differences in CSP duration between controls and patients, possibly through restoration of more physiological levels of intracortical inhibition in the motor cortex. These inhibitory changes correlated with the improvement of fatigue scales. The CSP may represent a suitable marker of neurophysiological mechanisms accounting for central fatigue generation either in controls or in MS patients, involving corticospinal neural pools supplying not only the fatigued muscle but also adjacent muscles sharing an overlapping cortical representation.

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3