Network Pharmacology-Based Dissection of the Mechanism of Drynariae Rhizoma for Low Back Pain

Author:

Wen Feng1234,Yu Jun5,Cheng Yan234ORCID

Affiliation:

1. Hubei University of Chinese Medicine, Wuhan 430061, China

2. Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China

3. Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China

4. Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430073, China

5. Hubei Aerospace Hospital, Xiaogan 432000, China

Abstract

Objective. To explain the potential mechanisms of Drynariae Rhizoma (DR) in the treatment of low back pain (LBP). Design. Network pharmacology was used to reveal the potential mechanisms including collecting the active ingredients of DR, analyzing the common gene targets of LBP and DR, constructing protein-protein interaction (PPI) network, collecting protein classification, performing Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and verifying significant gene targets. Results. 234 different gene targets and 18 active compounds altogether were obtained. AKT1, VEGFA, and HIF1A were deemed to be major gene targets based on the degree values. According to GO analysis, steroid metabolic process involved 42 (18.10%) potential therapeutic LBP targets, neuronal cell body involved 24 (10.30%) potential therapeutic LBP targets, and protein serine/threonine kinase activity involved 28 (12.02%) potential therapeutic LBP targets in biological process (BP), cellular component (CC), and molecular function (MF), respectively. According to KEGG and pathway interaction analyses, the PI3K-Akt signaling pathway involved 34 (15.89%) potential therapeutic LBP targets, and PI3K-Akt signaling pathway played a significant role in the treatment of LBP. The mRNA expression levels of AKT1 and HIF1A were upregulated in healthy nucleus pulposus (NP) tissue than in degenerative NP tissue. In contrast, the mRNA expression level of VEGFA was downregulated in healthy NP tissue than in degenerative NP tissue. Conclusions. In this study, we identified a potential relationship between LBP and DR in this work, as well as a synergistic mechanism of DR in the treatment of LBP, which serves as a benchmark for further in vivo and in vitro research.

Funder

Hospital Level Project of Hubei Provincial Hospital of Traditional Chinese Medicine

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3