Evaluating the Performance of Connected and Automated Vehicles in Fixed Signal-Controlled Conventional Intersections and Superstreets with Platooning-Based Trajectory Planning

Author:

Liu Shaojie1,Fan Wei David2ORCID

Affiliation:

1. USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City, Charlotte 28223, NC, USA

2. USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte 28223, NC, USA

Abstract

Connected and autonomous vehicles (CAVs) are emerging technology that attracts the interests of many transportation professionals and computational scientists. Several recent studies have investigated different model frameworks of CAVs in different transportation environments, such as on freeways and at conventional intersections. Nevertheless, few efforts have been made to investigate the performances of CAVs at innovative intersections, and the lack of knowledge can result in an inaccurate prediction of CAVs performances in the existing transportation network. This research intends to mitigate this research gap by studying the traffic delay and fuel consumption of CAVs in the environment of the superstreet and its equivalent conventional intersection through simulation-based experiments. A real-world superstreet in Leeland, NC, is selected and used. A conventional intersection with equivalent road designs is established in the simulation platform to make a comparison with the selected superstreet. This research develops both platooning and trajectory planning modeling frameworks to examine the implications of CAVs with different capabilities. The Intelligent Driver Model (IDM) is selected and applied to model the CAV behaviors, while Wiedemann 99 (W99) is used to model Human-Driven Vehicles (HDVs). The simulation results demonstrate the efficiency of both platooning and trajectory planning, respectively. Different effects of CAVs in the superstreet and its equivalent conventional intersection are observed. The findings from this research can provide an important reference for transportation planners and policymakers in predicting the influence of CAVs on the existing transportation infrastructure.

Funder

U.S. Department of Transportation

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3