Bacterial Diversity and Antibiotic Resistance Genes Associated with the Different Farming Systems of Black Tiger Shrimp (Penaeus monodon) in Bangladesh

Author:

Zakaria Md.1,Sanyal Santonu K.23,Haque Md. Inja-Mamun1ORCID,Mandal Shankar Chandra1ORCID,Watanabe Kozo4,Hossain Anwar14ORCID

Affiliation:

1. Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh

2. Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh

3. School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia

4. Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-Cho 3, Matsuyama, Ehime 790–8577, Japan

Abstract

Microbial community inhabiting the intestine of the shrimp (Penaeus monodon) and their surrounding environments (e.g., water and sediment) is considered as a key contributing factor for the sustainable farming of shrimp. Indiscriminate application of antibiotics in aquaculture is a growing concern due to the emergence of antibiotic resistant bacteria (ARB), more specifically the antibiotic resistance genes (ARGs). The present study investigates the microbiome composition and 19 ARGs from four different shrimp farming systems; (i) cluster, (ii) extensive, (iii) semi-intensive, and (iv) improved extensive in the southwest coastal region of Bangladesh. In doing so, the study applied advanced 16S rRNA-based metagenomic sequencing to study the bacterial composition. Moreover, gene specific polymerase chain reaction (PCR) was employed to detect the ARGs in shrimp, water, and sediments of different farming systems. In the current study, bacteria from the phylum Proteobacteria and Firmicutes were predominant among the samples (n = 12) collected from the different farming systems followed by Actinobacteria, Bacteroidetes, and Cyanobacteria. Firmicutes was the predominant phylum in the gut of shrimp cultured in the cluster (relative abundance 53.33%) and semi-intensive (relative abundance 59.2%) culture systems. Results indicated that the bacterial community structure was significantly ( p < 0.05 ) distinct among gut, sediment, and water samples as well as the farming systems. The shared operational taxonomic unit (OTU) in the sediment sample (16,495) was nearly double than the gut (7,931) and water (8,513) bacterial communities. The improved extensive farming system showed 1,289 (11.05%) shared OTUs among gut, sediment, and water followed by semi-intensive (6.87%), cluster (6.27%), and extensive (5.46%) farming system. Among the tested ARGs, sul1, cat, gyrA(C), tetA, tetC, tetX, ere(A), vanR, and dfrA1 were predominant in water and sediment samples. Semi-intensive farming system had the highest prevalence of ARGs (21.05%) while the lowest prevalence was found in extensive (5.26%) farming system. Overall, the study provides a comprehensive scenario of bacterial composition and growing emergence of ARGs in shrimp farming of Bangladesh. Therefore, the production strategy must focus on the alternatives of antibiotic for shaping the shrimp cultivation technique more sustainable.

Funder

Ministry of Science and Technology, Government of the People’s Republic of Bangladesh

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3