A Bearing Fault Diagnosis Using a Support Vector Machine Optimised by the Self-Regulating Particle Swarm

Author:

Fan Yerui1,Zhang Chao12ORCID,Xue Yu3,Wang Jianguo12,Gu Fengshou4ORCID

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology of the Inner Mongol, Baotou 014010, China

2. Inner Mongolia Key Laboratory of Intelligent Diagnosis and Control of Mechatronic Systems, Baotou, China

3. Beijing Tianrun New Energy Investment Co., Ltd., Beijing 100000, China

4. Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Abstract

In this paper, a novel model for fault detection of rolling bearing is proposed. It is based on a high-performance support vector machine (SVM) that is developed with a multifeature fusion and self-regulating particle swarm optimization (SRPSO). The fundamental of multikernel least square support vector machine (MK-LS-SVM) is overviewed to identify a classifier that allows multidimension features from empirical mode decomposition (EMD) to be fused with high generalization property. Then the multidimension parameters of the MK-LS-SVM are configured by the SRPSO for further performance improvement. Finally, the proposed model is evaluated through experiments and comparative studies. The results prove its effectiveness in detecting and classifying bearing faults.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3