The Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem: Evaluating the Generalized Mathematical Model

Author:

Toledo Claudio F. M.1,Kimms Alf2,França Paulo M.3,Morabito Reinaldo4

Affiliation:

1. Department of Computer Systems, Institute for Science Mathematics and Computing, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil

2. Department of Technology and Operations Management, Mercator School of Management, University of Duisburg-Essen, 47057 Duisburg, Germany

3. Department of Mathematics and Computer Science, Universidade Estadual Paulista, 19060-900 Presidente Prudente, SP, Brazil

4. Department of Production Engineering, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil

Abstract

This paper presents the synchronized and integrated two-level lot sizing and scheduling problem (SITLSP). This problem is found in beverage production, foundry, glass industry, and electrofused grains, where the production processes have usually two interdependent levels with sequence-dependent setups in each level. For instance, in the first level of soft drink production, raw materials are stored in tanks flowing to production lines in the second level. The amount and the time the raw materials and products have to be stored and produced should be determined. A synchronization problem occurs because the production in lines and the storage in tanks have to be compatible with each other throughout the time horizon. The SITLSP and its mathematical model are described in detail by this paper. The lack of similar models in the literature has led us to also propose a set of instances for the SITLSP, based on data provided by a soft drink company. Thus, a set of benchmark results for these problem instances are established using an exact method available in an optimization package. Moreover, results for two relaxations proved that the modeling methodology could be useful in real-world applications.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3