In Vivo Reconstruction of the Acetabular Bone Defect by the Individualized Three-Dimensional Printed Porous Augment in a Swine Model

Author:

Fu Jun1ORCID,Xiang Yi2ORCID,Ni Ming1ORCID,Qu Xiaojuan3ORCID,Zhou Yonggang1ORCID,Hao Libo1ORCID,Zhang Guoqiang1ORCID,Chen Jiying1ORCID

Affiliation:

1. Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China

2. Department of Orthopaedics, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, Shanxi 030001, China

3. Otolaryngological Department, The Logistics Support Forces of Chinese PLA 985 Hospital, Taiyuan, Shanxi 030001, China

Abstract

Background and Purpose. This study established an animal model of the acetabular bone defect in swine and evaluated the bone ingrowth, biomechanics, and matching degree of the individualized three-dimensional (3D) printed porous augment. Methods. As an acetabular bone defect model created in Bama miniswine, an augment individually fabricated by 3D print technique with Ti6Al4V powders was implanted to repair the defect. Nine swine were divided into three groups, including the immediate biomechanics group, 12-week biomechanics group, and 12-week histological group. The inner structural parameters of the 3D printed porous augment were measured by scanning electron microscopy (SEM), including porosity, pore size, and trabecular diameter. The matching degree between the postoperative augment and the designed augment was assessed by CT scanning and 3D reconstruction. In addition, biomechanical properties, such as stiffness, compressive strength, and the elastic modulus of the 3D printed porous augment, were measured by means of a mechanical testing machine. Moreover, bone ingrowth and implant osseointegration were histomorphometrically assessed. Results. In terms of the inner structural parameters of the 3D printed porous augment, the porosity was 55.48 ± 0.61 % , pore size 319.23 ± 25.05 μ m , and trabecular diameter 240.10 ± 23.50 μ m . Biomechanically, the stiffness was 21464.60 ± 1091.69 N / mm , compressive strength 231.10 ± 11.77 MPa , and elastic modulus 5.35 ± 0.23 GPa , respectively. Furthermore, the matching extent between the postoperative augment and the designed one was up to 91.40 ± 2.83 % . Besides, the maximal shear strength of the 3D printed augment was 929.46 ± 295.99 N immediately after implantation, whereas the strength was 1521.93 ± 98.38 N 12 weeks after surgery ( p = 0.0302 ). The bone mineral apposition rate (μm per day) 12 weeks post operation was 3.77 ± 0.93 μ m / d . The percentage bone volume of new bone was 22.30 ± 4.51 % 12 weeks after surgery. Conclusion. The 3D printed porous Ti6Al4V augment designed in this study was well biocompatible with bone tissue, possessed proper biomechanical features, and was anatomically well matched with the defect bone. Therefore, the 3D printed porous Ti6Al4V augment possesses great potential as an alternative for individualized treatment of severe acetabular bone defects.

Funder

Military Medical and Health Achievements Expansion Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3