Dual-Band Self-Complementary 5G Antenna for Wireless Body Area Network

Author:

Rahman H. M. Arifur1ORCID,Shovon Md. Nakib Alam1,Khan Mohammad Monirujjaman1ORCID,Alanazi Turki M.2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka-1229, Bangladesh

2. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia

Abstract

A design of a self-complementary dual-band fifth-generation (5G) antenna for a wireless body area network (WBAN) has been presented in this paper. Like many other advantages, dual-band antennas have the benefit of being able to establish a reliable wireless connection in places that are frequently out of reach. The antenna operates at two popular 5G NR, FR-2 frequency bands: n257, or 28 GHz, and n260, or 39 GHz. FR-2 bands are prominent for high-speed data transactions within a limited range, which is perfect for WBAN applications. The proposed self-complementary single element design has a physical size of 6 mm × 8 mm × 1.59 mm and is designed with a Rogers RT6002 substrate with a dielectric constant of 2.94. In free space simulations, the antenna performed satisfactorily, achieving around 90% efficiency and having return losses of 16.32 dB and 20.47 dB at the lower and upper frequency bands sequentially. The antenna generated almost omnidirectional patterns at both frequencies with a peak gain of 4.74 dB. By placing the antenna next to a 3D human torso phantom that had been digitally created with accurate human body features, the design’s onbody performance was assessed. Onbody simulations produced favorable performance with a small dispersion from their peak values in some parameters, i.e., efficiency and reflection coefficients but produced more gains: 4.34 dBi at 28 GHz and 6.19 dBi at 39 GHz. For further distance-based investigation, the antenna was placed in five different positions relative to the torso. The test yields 67% efficiency with the minimum gap and 71% at the highest distance from the human body for the lowest band. Though the lower-frequency band produces better results with more gaps, the higher-frequency band performs consistently better in even the closest placement to the human body model by reaching more than 6 dB of gain with above 81% efficiency and wider than 10 GHz of bandwidth. The overall performance indicates this design can be a good solution to complex WBAN scenarios.

Funder

North South University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metasurface loaded dual band antenna for high gain on- and off- body communication;Physica Scripta;2024-07-17

2. A UWB Antenna for Wireless Body Area Network and its Characteristics Analysis;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

3. Design of Ultra Wide-Band Triangular Shaped Patch Antenna for 39 GHz Millimiter-Wave Applications;2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST);2024-04-24

4. Design of Compact T-Shape Slot and Notch Loaded Dual Band Microstrip Antenna for 5G/WLAN Application in S and C-Band;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

5. Design of Wearable Textile Antenna for Wireless Body Area Network;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3