Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models

Author:

Xiong Guojiang1ORCID,Zhang Jing1,Shi Dongyuan2ORCID,Yuan Xufeng1

Affiliation:

1. Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University, Guiyang 550025, China

2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Modeling solar photovoltaic (PV) systems accurately is based on optimal values of unknown model parameters of PV cells and modules. In recent years, the use of metaheuristics for parameter extraction of PV models gains more and more attentions thanks to their efficacy in solving highly nonlinear multimodal optimization problems. This work addresses a novel application of supply-demand-based optimization (SDO) to extract accurate and reliable parameters for PV models. SDO is a very young and efficient metaheuristic inspired by the supply and demand mechanism in economics. Its exploration and exploitation are balanced well by incorporating different dynamic modes of the cobweb model organically. To validate the feasibility and effectiveness of SDO, four PV models with diverse characteristics including RTC France silicon solar cell, PVM 752 GaAs thin film cell, STM6-40/36 monocrystalline module, and STP6-120/36 polycrystalline module are employed. The experimental results comparing with ten state-of-the-art algorithms demonstrate that SDO performs better or highly competitively in terms of accuracy, robustness, and convergence. In addition, the sensitivity of SDO to variation of population size is empirically investigated. The results indicate that SDO with a relatively small population size can extract accurate and reliable parameters for PV models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3