Prediction Model of Rotor Yarn Quality Based on CNN-LSTM

Author:

Hu Zhenlong1ORCID

Affiliation:

1. Jiyang College, Zhejiang A&F University, Zhuji, 311800 Zhejiang, China

Abstract

In the whole textile industry chain, yarn production is one of the key links, which has a great impact on the quality of textile and clothing products. For a long time, the textile industry has been hoping for a yarn quality prediction technology, which can accurately predict the final yarn quality indicators according to the known conditions such as raw materials and production processes. CNN-LSTM yarn prediction model is a deep neural network model based on the assumption that the influence of textile processing time series on yarn quality is considered. CNN optimizes the input eigenvalues through one-dimensional convolution and pooling, and LSTM matches the optimized fiber performance indexes and process parameters in time series according to the processing sequence and excavates their laws, thus realizing the goal of predicting yarn quality indexes. The effects of input fiber performance index, process parameters, convolution kernel parameters, pool kernel parameters, LSTM unit number, LSTM layer number, and optimization algorithm on prediction accuracy were studied, and the parameters of CNN-LSTM model were determined. Experiments on the data set of spinning yarn show that the mean square error (MSE) of CNN-LSTM model in predicting yarn strength, Dan Qiang unevenness, evenness unevenness, and total neps is lower than that of linear regression model and BP neural network. At the same time, it is found that the prediction accuracy of CNN-LSTM model is greatly influenced by process parameters and optimization algorithm.

Funder

Zhejiang A&F University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3