Effect of Green Synthesized Iron Oxide Nanoparticles Using Spinach Extract on Triton X-100-Induced Atherosclerosis in Rats

Author:

Obidah Abert Habila12ORCID,Umaru Aduwamai Hauwa1ORCID,Shehu Adamu Saminu13ORCID

Affiliation:

1. Department of Biochemistry, Modibbo Adama University Yola, PMB 2076, Yola, Adamawa, Nigeria

2. School of Science, Adamawa State College of Education Hong, Hong, Nigeria

3. Department of Biochemistry, Ahmadu Bello University Zaria, Zaria, Nigeria

Abstract

The effect of iron oxide nanoparticles (FeONPs) synthesized using Spinacia oleracea leaf extract on Triton X-100-induced atherosclerosis in white Wistar rats was determined. FeONPs were characterized to determine their size, structure, composition, and shape. In vitro antioxidant activity of FeONPs against 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) was determined. Atherosclerosis was induced by intraperitoneal administration of 5% Triton X-100 (100 mg/kg body weight) for 14 days. Group 1 received standard rat chow and water. Group 2 received 100 mg/kg body weight of Triton X-100 and a standard diet. Group 3 received 100 mg/kg body weight of Triton X-100 followed by 20 mg/kg body weight of atorvastatin for 21 days. Groups 4, 5, and 6 received 100 mg/kg body weight Triton X-100 was followed by variable concentrations of 100, 300, and 500 µg/kg body weight FeONPs, respectively, for 21 days. Blood samples were analyzed for lipid, liver, antioxidant, and cardiovascular markers. Histopathology of the heart was also examined. Characterization revealed the amorphous nature, functional groups, and clustered topography of FeONPs. An upregulated antioxidant activity of FeONPs was observed in a dose-dependent manner. Administration of Triton X-100 showed elevated levels of lipid biomarkers except for high-density lipoprotein (HDL), which decreased in group 2 in comparison to group 1. Liver, antioxidant, and cardiovascular biomarkers all significantly increased. The structural alteration was observed in the heart tissue following histopathology examination. Administration of FeONPs significantly decreased all biomarkers and increased the level of HDL. Also, tissue architecture was restored. Our findings demonstrated that FeONPs were effective in ameliorating Triton X-100-induced atherosclerosis in rats.

Funder

Petroleum Technology Development Fund

Publisher

Hindawi Limited

Subject

Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3