Quantitative Analysis of Broken Rotor Bars in Cage Motor Based on Energy Characteristics of Vibration Signals

Author:

Shi Jie1ORCID,Shen Haifeng1ORCID,Ding Zhenkai1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, China

Abstract

The rotor, as the power output device of a cage motor, is subject to a type of invisible fault, BRB, during long-term use. The conventional motor vibration signal fault monitoring system only analyzes the rotor qualitatively for the fault of BRBs and cannot evaluate the fault degree of BRBs quantitatively. Moreover, the vibration signal used for monitoring has nonstationary and nonlinear characteristics. It is necessary to manually determine the time window and basis function when extracting the characteristics of the time-frequency domain. To address these problems, this paper proposes a method for quantitative analysis of BRBs based on CEEMD decomposition and weight transformation for feature extraction and then uses the AdaBoost to construct a classifier. The method applies CEEMD for adaptive decomposition while extracting IMFs’ energy as the initial feature values, uses OOB for contribution evaluation of features to construct weight vectors, and performs a spatial transformation on the original feature values to expand the differences between the feature vectors. To verify the effectiveness and superiority of the method, vibration signals were collected from motors in four BRB states to produce rotor fault data sets in this paper. The experiment results show that the feature extraction method based on CEEMD decomposition and weight transformation can better extract the feature vectors from the vibration signals, and the constructed classifier can accurately perform quantitative analysis of BRB fault.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3