Influence of Duct Configurations on the Performance of Solar-Assisted Heat Pump Dryer for Drying Tobacco Leaves

Author:

Suleiman Salum Abdulkarim1,Pogrebnoi Alexander1ORCID,Kivevele Thomas T.1ORCID

Affiliation:

1. School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania

Abstract

In the present study, a solar-assisted heat pump dryer (SAHPD) has been designed, fabricated, and tested its performance on drying tobacco leaves. The hot air generated from the solar collector and condenser unit of the heat pump was used as a source of heat in the drying chamber. In this study, we investigated the influence of three duct configurations (open, partially closed, and completely closed) on the thermal performance of SAHPD to establish the best configuration for drying tobacco leaves. The average drying temperature was found to be 66, 64, and 60°C; the coefficient of performance of the heat pump was 3.4, 3.2, and 3.0; the heat energy contribution from the solar collector was 6.6%, 5.0%, and 5.1% while for the condenser was 93.4%, 95.0%, and 94.9%, and electrical energy consumption was 2.3, 2.8, and 2.6 kWh, for the open, partially closed, and completely closed duct system, respectively. Based on these results, the open system demonstrated the best performance. According to the study’s findings, SAHPD has been shown to be an energy-efficient method of drying tobacco leaves and is environmentally friendly as opposed to the conventional use of wood fuel, which results in environmental pollution, desertification, and deforestation.

Funder

RSIF

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3