Short-Term Load Monitoring of a Power System Based on Neural Network

Author:

Yang Di1ORCID

Affiliation:

1. State Grid Hebei Marketing Service Center, Shijiazhuang, Hebei 050000, China

Abstract

In order to improve the accuracy of power load forecasting, this paper proposes a neural network-based short-term monitoring method. First, the original energy load signal is decomposed by the CEEMDAN algorithm to obtain several eigenmode function components and residual components; several eigenmode function components and residual functions are fed into the NARX neural network for computational purposes. The partial hypothesis is superimposed in the following part to obtain the final short-term forecast. According to the test results, the MAPE of the CEEMDAN-NARX model is 4.753%, 3.540%, and 0.343% lower than the SVM, RNN, and NARX models, respectively, and 3.741% and 2.682% lower than CEEMDAN-SVM and CEEMDAN-RNN, respectively. The MAPE and RMSE of the CEEMDAN-NARX model are 0.765% and 101.7 MW, respectively, which are 0.468% and 45.2 MW lower than NARX models, respectively. Compared to CEEMDAN-SVM, the MAPE of CEEMDAN-NARX and CEEMDAN-RNN decreased by 0.986% and 0.692%, respectively, and the RMSE of CEEMDAN-NARX decreased by 111.5 and 65.7 MW, respectively, compared to CEEMDAN-SVM. Conclusion is that the load forecasting model based on the combination of CEEMDAN algorithm and NARX neural network can effectively connect, reduce the negative impact of noise on forecasting results, and improve forecasting accuracy.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Reference24 articles.

1. Short term power load forecasting based on EEMD-GRU-MLR;D. Y. Deng;Power Grid Technology,2020

2. Short term load forecasting based on improved short - and long-term memory networks;J. Wang;Electrical Automation,2022

3. Short term power load forecasting method based on hybrid neural network;X. Ren;Electronic Measurement Technology,2022

4. Multi scale short-term power load forecasting based on VMD and TCN;J. Liu;Journal of UESTC,2022

5. Short‐term power load forecasting based on multi‐layer bidirectional recurrent neural network

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3