Analysis of Random Variation in Subthreshold FGMOSFET

Author:

Banchuin Rawid1ORCID

Affiliation:

1. Department of Computer Engineering, Siam University, 235 Petchakasem Road, Bangkok 10163, Thailand

Abstract

The analysis of random variation in the performance of Floating Gate Metal Oxide Semiconductor Field Effect Transistor (FGMOSFET) which is an often cited semiconductor based electronic device, operated in the subthreshold region defined in terms of its drain current (ID), has been proposed in this research.IDis of interest because it is directly measurable and can be the basis for determining the others. All related manufacturing process induced device level random variations, their statistical correlations, and low voltage/low power operating condition have been taken into account. The analysis result has been found to be very accurate since it can fit the nanometer level SPICE BSIM4 based reference with very high accuracy. By using such result, the strategies for minimizing variation inIDcan be found and the analysis of variation in the circuit level parameter of any subthreshold FGMOSFET based circuit can be performed. So, the result of this research has been found to be beneficial to the variability aware design of subthreshold FGMOSFET based circuit.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3