Hydrogen Abstraction from Fluorinated Ethyl Methyl Ether Systems by OH Radicals

Author:

White Curtis W.1,Martell Jaime M.1

Affiliation:

1. Department of Chemistry, Cape Breton University, Sydney, NS, Canada B1P 6L2

Abstract

A systematic computational investigation of hydrogen abstraction by OH from the full series of fluorinated ethyl methyl ethers (EME) containing at least one H and one F, C2HnX5-nOCHmX3-m (n=05, m=03; and n=m=0 not allowed), including 147 reactants and 469 transition states, has been carried out, employing the MP2/6-31G(d) level of theory. Results for optimized geometries, including evidence of intramolecular hydrogen bonding in transition states, and barrier heights are presented. Trends pertaining to the number of fluorines substituted, key bond lengths, barrier heights, and key bond angles were found with good correlations and were investigated. An increase in the number of F increases the barrier height of the reaction. An increase in some parameters such as C–H length of TS, relative change in C–H from reactants to TS, ∠COC of reactants, ∠HOH in the TS, and relative change in ∠HOH between TS and free water bond angle also correlates with increased barrier height. An increase in other parameters like C–H length in the reactants and hydrogen bonding can decrease the barrier height.

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3