Atmospheric Environment Fabrication of Composite Films by Ethanol Catalytic Combustion and Its Use as Counter Electrodes for Dye-Sensitized Soar Cells

Author:

Zou Xiaoping1,Wei Cuiliu1

Affiliation:

1. Research Center for Sensor Technology, Beijing Key Laboratory for Sensor, Ministry of Education Key Laboratory for Modern Measurement and Control Technology, and School of Applied Sciences, Beijing Information Science and Technology University, Jianxiangqiao Campus, Beijing 100101, China

Abstract

The composite films which consist of amorphous carbon, carbon nanotube, and iron nanoparticles were prepared by ethanol catalytic combustion in atmospheric environment. The as-prepared composite films have good electrocatalytic activity and high conductivity which is due to their particular structure. The efficiency of the composite films based dye-sensitized soar cells (DSSCs) is closed to that of the Pt based one. Most importantly, the DSSC employing the composite films presents a higher FF than those of Pt based solar cell. In addition, it is a simple method for mass production of composite films counter electrode (CE) which is expected to reduce the cost of fabricating DSSCs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3