Fabrication of High Transparency Diamond-Like Carbon Film Coating on D263T Glass at Room Temperature as an Antireflection Layer

Author:

Lin Chii-Ruey123,Chang Hong-Ming2ORCID,Chang Chien-Kuo3

Affiliation:

1. Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. College of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

3. Graduate College of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

This study intends to deposit high transmittance diamond-like carbon (DLC) thin films on D263T glass substrate at room temperature via a diamond powder target using the radio frequency (RF) magnetron sputtering technique. Moreover, various process parameters were used to tune the properties of the thin films by using the Taguchi method. Experimental results show that the content of sp3bonded carbon decreases in accordance with the effect of the substrate temperature. In addition, the hardness of all as-deposited single-layer DLC films ranges from 13.2 to 22.5 GPa, and the RMS surface roughness was improved significantly with the decrease in sputtering pressure. The water repellent of the deposited DLC films improved significantly with the increase of the sp3content, and its contact angle was larger than that of the noncoated one by 1.45 times. Furthermore, the refraction index (n) of all as-deposited DLC films ranges from 1.95 to 2.1 atλ= 600 nm. These results demonstrate that the thickness increased as the reflectance increased. DLC film under an RF power of 150 W possesses high transmissive ability (>81%) and low average reflectance ability (<9.5%) in the visible wavelengths (atλ= 400–700 nm).

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3