Preparation and Photocatalytic Characterization of Modified Nano TiO2/Nd/Rice Husk Ash Material for Rifampicin Removal in Aqueous Solution

Author:

Dang Thi Ngoc Thuy1,Thi Ha Nguyen2ORCID,Nguyen Duc Dung1,Nguyen Thi Sen3,Nguyen Duc Toan4,Nguyen Hoang Nam1ORCID

Affiliation:

1. Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam

2. Faculty of Environmental Sciences, VNU-University of Science, Vietnam National University, Hanoi 100000/11406, Vietnam

3. Institute of Natural Resources and Environment Science, 7th Floor, GIM Building, 460 Lane, Hanoi 100000/11408, Vietnam

4. Institute of Natural Resources and Environment Training, 83 Nguyen Chi Thanh, Hanoi 100000/11500, Vietnam

Abstract

Antibiotics like rifampicin are often persistent in the environment. When entering the water, it causes antimicrobial resistance that affects the ecosystem and accumulates in the aquatic organisms and affects human health through the food chain. In this study, titanium dioxide was doped with neodymium (0.01 to 0.8%) using the sol-gel hydrothermal method. TiO2/Nd was then coated on rice husk ash to produce a modified TiO2/Nd/rice husk ash material containing 0.36% (w/w) Nd. The structural characteristics and photocatalytic properties of the materials were analyzed by X-ray diffraction, energy dispersive X-ray, transmission electron microscopy, scanning electron microscopy, forbidden zone energy, and specific surface area. The TiO2/Nd material exhibited a higher photocatalytic decomposition capacity than TiO2 and depended on the Nd content. The rifampicin removal efficiency of TiO2/Nd materials with 0.36 to 0.80% Nd contents was approximately 40% higher than that of TiO2/Nd containing 0.01 to 0.28% Nd. A new photocatalytic TiO2/Nd/rice husk ash material was developed to decompose rifampicin. The rifampicin-degrading efficiency of TiO2/Nd and TiO2/Nd/rice husk ash material reached approximately 86 and 75%, respectively, within 90 min under sunlight. Although a lower efficiency was obtained, the TiO2/Nd/rice husk ash material was selected to degrade rifampicin residue in water via the photocatalytic process (under sunlight) because of its advantages such as requirement of a small amount and easy recovery. In the rifampicin removal process, k values were found to match the zero- and first-order kinetics. In particular, for TiO2/Nd and TiO2/Nd/rice husk ash under solar irradiation, R2 values reached approximately 0.98. These results have been previously published as a preprint.

Funder

MOET

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3