Investigation of Relaxation Time on Viscoelastic Two-Dimensional Flow Characteristics Using FreeFem++

Author:

Khan Muhammad Sabeel1ORCID,Memon M. Asif12ORCID,Bonyah Ebenezer3ORCID

Affiliation:

1. Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan

2. Department of Mathematics, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia

3. Department of Mathematics Education, Akenten Appiah Menka University of Skills Training and Entrepreneurial, Kumasi, Ghana

Abstract

Viscoelastic fluid flow models have shown promising scope in modeling the behavior of many industrial materials such as polymeric materials, microfluidics, biological liquids, gels, plastic melts, and geomaterials. The relaxation time in these models is of great physical significance. In this article, we study the impact of relaxation time on the viscoelastic flow characteristics in a two-dimensional baffled cavity. To the best of authors’ knowledge, relaxation time impact on the chosen flow characteristics in the present context has not been studied and presented in the literature before. The constitutive theory of upper convected Maxwell viscoelastic flow incorporating the viscosity ad relaxation time is taken into consideration. To this account, the flow governing PDEs are derived, and an unsteady variational numerical approach based on classical variational setting is presented. A numerical algorithm based on characteristic Galerkin finite elements method is designed and implemented using the programming language FreeFem++. Computations are carried out and drag and lift forces along with other parameters of interests are calculated. Impact of relaxation time on these flow characteristics are studied and analyzed. The relaxation time R f is assumed to be in the range of 0 R f 1 × 10 3. The flow simulations are carried out for large Reynolds number in the range of 200 ≤ Re ≤ 5000. In addition to the application of FreeFem++, some new and interesting features of the flow characteristics are presented and discussed.

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3