Front-End Model of Wireless Network Combined with Artificial Intelligence in Computer Information Management System

Author:

Wang Yu1ORCID

Affiliation:

1. Modern Education Technology Center, Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, China

Abstract

To address the security problem of computer information management, an artificial intelligence- (AI-) based information intrusion detection model is built in combination with wireless network. Firstly, the background and characteristics of wireless local area network (WLAN) technology are analyzed, and the relationship between AI technology and deep learning is introduced. Secondly, an intrusion detection model on account of long short-term memory (LSTM) neural network and gated recursive unit (GRU) is constructed after analysis of different neural network models. The L2 weight attenuation and dropout regularization strategies are combined with the neural network model. Finally, an intrusion detection front-end model combining wireless network and AI is established. From the comparison of intrusion detection experiments, the generalization ability of the model can be improved by using L2 weight attenuation and dropout regularization strategies. Nevertheless, the performance improvement is only slight, so the early stop method is adopted instead of the regularization strategy. Compared with the existing classification models, the overall performance of LSTM and GRU models is improved by about 17%. The performance of GRU model is not much different from that of LSTM model, but the amount of computation is reduced. Therefore, GRU model is the optimal choice to construct intrusion detection system. The intrusion detection models in WLAN and GRU can improve the security performance of computer information management system. To sum up, this work provides reference for the development of computer management system.

Funder

Qiqihar Science and Technology Bureau Directive Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3