Affiliation:
1. School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China
2. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Abstract
Aiming at the nonstationary characteristics of echo signal for a high-speed maneuvering target, a signal feature extraction method is proposed by combining the time-frequency analysis and convolution neural network, and then the automatic detection of radar moving target in a noisy environment is realized. Firstly, the echo signal is modelled as a more accurate Gaussian modulation-linear frequency modulation (GM-LFM) signal and converted into the time-frequency image by a second-order synchroextracting transform (SET2). Then, ridge extraction is applied to extract the maximum energy ridge from the time-frequency distribution, and the data set is constructed by the maximum energy ridge. Finally, the data set is input into AlexNet for training, and the deep-level features of echo signal are extracted to realize the automatic moving targets detection. Simulation results show that SET2 and RE can effectively enhance the time-frequency characteristics of echo signal under the noisy environment, and the detection accuracy and noise robustness of the proposed method are better than that of SET1 and smooth pseudo-Wigner–Ville distribution (SPWVD).
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献