Radar Moving Target Detection Method Based on SET2 and AlexNet

Author:

Guo Yong1ORCID,Yang Li-Dong2ORCID

Affiliation:

1. School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

Aiming at the nonstationary characteristics of echo signal for a high-speed maneuvering target, a signal feature extraction method is proposed by combining the time-frequency analysis and convolution neural network, and then the automatic detection of radar moving target in a noisy environment is realized. Firstly, the echo signal is modelled as a more accurate Gaussian modulation-linear frequency modulation (GM-LFM) signal and converted into the time-frequency image by a second-order synchroextracting transform (SET2). Then, ridge extraction is applied to extract the maximum energy ridge from the time-frequency distribution, and the data set is constructed by the maximum energy ridge. Finally, the data set is input into AlexNet for training, and the deep-level features of echo signal are extracted to realize the automatic moving targets detection. Simulation results show that SET2 and RE can effectively enhance the time-frequency characteristics of echo signal under the noisy environment, and the detection accuracy and noise robustness of the proposed method are better than that of SET1 and smooth pseudo-Wigner–Ville distribution (SPWVD).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3