An Automatic Error Detection Method for Engineering English Translation Based on the Deep Learning Model

Author:

Wang Rui1ORCID

Affiliation:

1. School of Foreign Language Studies, Xi’an University of Finance and Economics, Xi’an 710061, China

Abstract

Accuracy of deep learning model translation is a key index to evaluate the application performance of engineering English translation. In this paper, an automatic error detection system for English translation is proposed. In the particular task of grammar detection, researchers have gradually shifted their attention from statistical methods to neural network methods. Three deep learning algorithm models are established, and the multitask performance of the model is better than that of the conditional random field model and the LSTM-CRF model. The reason is that the multitask learning model of auxiliary tasks is included to some extent, which solves the problem of data sparsity and enables the model to be fully trained even under the condition of uneven label distribution. Thus, it performs better than other models in the task of syntax error detection. It realizes the word spelling error check based on the dictionary and uses the thought of editing distance to prompt the word error found, which can automatically check a large number of translations. On the basis of analyzing the sentence structure characteristics of engineering English translation, this paper realizes the detection of subject-verb agreement errors and analyzes the main word of the subject corresponding to the predicate verb by constructing the syntactic structure tree of the sentence, so as to realize the judgment of subject-verb agreement errors.

Funder

Shaanxi Provincial Education Bureau

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Optimization and Real-Time Application of English Machine Translation Driven by Big Data;The 3rd International Conference on Electronic Information Technology and Smart Agriculture;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3